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Abstract Logistic regression model is a nonlinear regression system. It has rapidly become a widely used
multivariate statistical method. In this paper, we analyze the 1:M conditional logistic regression modelling
equation, and use Newton-Raphson iteration algorithm to obtain the optimized value of the parameter

estimates. Also, a flow-chart of the program is provided.

1. Imtreduction

In 1838, Verhulet developed a simple logistic
equation for growing pepulation. Later, Volierra
. Peart and Reed developed the life processing
model for predicting analysis of biological
arowth, (from the womb to the tomb for the
population). Recently personal computers have
become cheaper and more compact. PC software
packages (e.g. SAS, SPSS/PC+ etc.) have been
developed for statistical modellings. During the
1970°s~1990’s, logistic regression modelling
techniques not only have been successfully
applied to the biological forecasting, chronic
disease etiological research and setting diagnosis
criterions, but also have becoming widely used
for various fields. such as weather & forecasting,
artificial intelligent, ecological, economic, and
socioeconomic sysiems, Today, its theory and
applications are still being further investigated.
In this paper. we analyze the 1:M conditional
logistic regression modelling equation and use
Newton-Raphson iteration algerithm to obtain
cptimized values for the parameter estimates.

2. 1:M Conditional jogistic Regression
Modelling
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be the exposure vector

Xy = (e o)
for the ;* control (=1, M.}
where . represents the  value of  the

K™ exposure variable for the case (j=0) or j"

controf in the " matched set. We may then
write the conditional likelihcod in the form
(Liddell, McDenald & Themas, 1977; Breslow
etal., 1978);
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Based on conditional probability, exposure risk
factors probability for case may be defined as

Plx, y=D=Ply=11xy) Plxy)/ P(y=1)

Exposure probability of risk factor for control,
may be written as

Plx,ly=0)=P(y=01x,) P(x;)/ P(y=0)

Logistic function is defined as
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where o represents the {og odds of disease risk
for a person with a standard (x=8) set of
regression  variables, while exp(f8,)is the
fraction by which this is increased {(or decreased)
for every unit change it x,, .

Using the Bayesian formula, we have
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Using expressions (2) and (3), expression (4)

can be written as
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If the numerator and denominator in expression
(5-b) are stmultanecusly divided by,

exp( « + 2 B,x.)

k=1
then, expression (5-b) has the following form
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In fitting observation data of fields, we need to
observe case-control of N using equations (3-a),
{6). The value of conditional Likelihood
function can then be written as
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The first and second order partial derivatives of
expression (7) can be expressed as
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3. Mewton-Raphson (NR) Method

The Newton-Raphsorn method is a powerful
method of solving non-linear algebraic
equations. It works faster and is sure o converge
in most casts as compared to the Gauss-Seidel
{GS) method. The convergence can be speeded
up considerably by performing the first iteration
through the GS method and using the values
obtained for starting the NR iterations.

Before explaining how the NR method 1s applied
to solve the optimum value of parameter estimate
problem. we briefly review the Newton-Raphson
methaod,

Consider a set of p  non-linear  algebraic
Equaticns
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Assume initial values g° g7 ... I’B{‘jare
unknown. Let Aﬁ{ﬂgﬁé’,.. gg!‘,’ be the

corrections, which added to the initial guess,
oive the actual solution as foliow
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Expanding the above equations using Taylor
series around the initial guess, we have
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the Higher order terms in expressions (13) can
write in the following matrix form
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Or in vector matrix form
' +7°AB° =0 (15)
where ]0 is known as the Jacobian matrix

{obtained by differentiating the function vector

L’ with respect to {3 and evaluating it at }39).
Equation (13) can be written as
L =[-j148° (16)
Approximated values of corrections Aﬁe can

be obtained from expression (16). These being a
set of linear algebraic equations can be solved
efficiendy by triangularization and  back
substitution .

Updated values of [ are then

ﬁi - ﬁﬂ "}‘Aﬁe

or, in general , for the ( r+! jth iteration

ﬁ(r-H) = ﬁ(r) +Aﬁ{r)

The iterations are continued till equation (11)is
satisfied to an arbitrarily desired accuracy, i.e

ilr(ﬁ( r))i <f {a specified value);

i=1,2,..., P
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4. General Definition of the Relative Risk
(RR)

So far the 1:M conditional logistic model has
been used solely as a means of relating disease
probabilities to one or mote categorical risk
factors whose levels are represenied by indicator
variables, More generally the model relates a
dichotomous outcome variable y which, in this
paper, denotes whether (y=1) or not {y=0) the
individual develops the disease during the study
period, to a series of K regression variables via
the equation {2, (3).

This formulation implies that the Relative Risk
(RR) for individuals having two different sets
x " and X of risk variables is

PO - POOY X .
RR:——-——mw———;——zexp@ﬁ oG -%)1 (9
POO-PX)) AT

Here the ratic of incidence rates for individuals
with exposures X~ and X is given exacily by
the eguation (19). This approach has the
concepiual advantage of eliminating the Odds
Ratio (OR) approximation altogether, and thus
obviates the rare disease assumption.

3. Criteria for Assessing Model Fit

Suppose the medel contains S explanatory
variables. Let v, be the response value of the

j™  observation. The estimate p, of

p, =P =y)01 obtained by replacing the
regression  coefficients by the maximum
likelihood estimates (MLEs). The three criteria
used by the SAS logistic procedure are
calculated as follows:

(i) -2Log Likelihood

2 Logl=-2 z W logl ;j) 20)
!
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where W is the weight of the j™ observation.

(ii) Akaike Information Criteria {AIC)
AIC=-2LogL+2(K+5} 2n

where K is the number of ordered values
for the response and S is the number of
explanatory variables.

(iii) Schwartz Criterion
SC= -2LogLl+(K+S)log(N) (22}

where K and S are defined as above, and
N is the total number of observations {for
the actual model syntax) or the total
number of trials (for the events/irials model
syntax).

The —2Log Likelihood statistic has a Chi-
square  distsibution under the nulf
hypothesis  (that ail the explanatory
variables in the model are zero), and the
SAS, SPSS/PC+ etc software package
procedure prints a p-value for this statistic.

The AIC and SC statistic give two different
ways of adjusting the —2Log Likelihood
statistic for the number of terms in the
model and the number of observations
used. These statistics should be used when
comparing different models for the same
data, for example, when reader use the
SELECTION=STEPWISE option in the
MODEL Statement of SAS package;
Lower values of the statistic indicate a
more desirable model.



6.  Program Flow-Chart
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Figure k. 1:M Conditional Logistic Regression Model
Program Flow-Chart

7. Conclusion

In this paper. we have analvzed the 1M
conditional logistic regression modelling method
and used Newton-Raphson iteration algorithm 1o
obin the estimate values (ﬁf) of parameter-
optmized. Although equations (7) and (8) are
cguivalent,  we  have compared them  and
recorded their iterations and convergence time,
respectively, we found that equation {7) has
faster convergence than (8) when studied for
fiing field data, Another, the bias of risk
variables contounding can not only be well
avercome by the |:!M ceaditional logistic model,
but wiso it has widely adapting range of maiching
fleld data, such as binary response variables (for
cxample, success. failure) and ordinal response
vartables (for exampie, none. mild, severe) and
continuous data. Meanwhile, we still iatroduce
the Relative Risk (RR) (see equation (19)) . A
vonsequence ol cquation (1) is that the RR

associated with the risk factors under study are
constant  over strata. By  including  such
interacrion terms among the X's, one may model
changes in the relative risk which accompany
changes in the stratfication variables. The fact
that the parameters of the logistic medel are so
easily interpretable in terms of RR. We have
introduced a new methodelogy progress in
applied statistics which is criteria for assessing
modei fit. as mentioned above is one of the main
reasons for using the model.
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